Serena MCP
SERENA MCP
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β PROBLEM: AI kod yazarken codebase'i anlamΔ±yor β
β Token limit, grep-like search, string find β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β SERENA SOLUTION (MCP + LSP Integration) β
β β
β Code ββ> AST Parser ββ> LSP ββ> Symbols β
β β β
β AI Agent βββββββββββββββββ β
β β β
β ββ find_symbol β
β ββ find_referencing_symbols β
β ββ insert_after_symbol β
β ββ semantic_code_search β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β OUTCOME: IDE gibi kod anlama + dΓΌzenleme β
β Token-efficient, symbol-level navigation β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALTERNATΔ°FLER (2025)
Context Management (Serena'ya En YakΔ±n):
A. CLAUDE CONTEXT (Zilliz)
ββββββββββββββββββββββββββββββββββββββ
β Codebase β Vector DB (Zilliz) β
β Query β Hybrid Search β
β (BM25 + Dense Vector) β
β β
β β ~40% token reduction β
β β Incremental indexing (Merkle) β
β β AST-based chunking β
β β Requires Zilliz Cloud + OpenAI β
ββββββββββββββββββββββββββββββββββββββ
B. CHROMA MCP
ββββββββββββββββββββββββββββββββββββββ
β Documents β Vector DB β
β Semantic + Full-text search β
β β
β β Persistent storage β
β β Open source β
β β Document-focused (not code) β
ββββββββββββββββββββββββββββββββββββββ
Framework Alternatifleri:
C. LANGCHAIN/LANGGRAPH
Developer Framework β Custom tools
β Complexity, security responsibility
D. SEMANTIC KERNEL (Microsoft)
.NET/Python SDK β Memory management
β Microsoft ecosystem dependency
E. VERTEX AI (Google)
Managed platform β Enterprise features
β Vendor lock-in, Google Cloud only
KARΕILAΕTIRMA
Serena Claude Chroma LangChain
Context
ββββββββββββββββββββββββββββββββββββββββββββββββββββ
Code-focused β β β β
Semantic search β β β β³
Symbol-level β β β β
LSP integration β β β β
Free/Open source β β β β
Setup complexity β³ β³ β β
Token efficiency βββ βββ ββ β
30+ languages β β N/A N/A
IDE-like tools β β β β
Vector DB req. β β β β³
Legend: β=Yes β=No β³=Partial β=Low β=Medium ββ=High βββ=Very High
PATTERN
Serena: LSP β Symbol-level β IDE tools
Claude Context: Vector DB β Semantic search β Hybrid retrieval
Chroma: Vector DB β Document management β Persistent storage
LangChain: Framework β Custom orchestration β Developer control
CONSTRAINT
- Serena: Python 3.8+, LSP servers for each language
github.com/oraios/serena
- Claude Context: Node 20-23, Zilliz Cloud token, OpenAI API
github.com/zilliztech/claude-context
- Chroma: Python env, client setup docs.trychroma.com
- LangChain: Framework complexity, security self-managed
python.langchain.com
2025 GΓΌncellemeler
MCP 1. yΔ±ldΓΆnΓΌmΓΌ (2025-11-25):
- Task-based workflows (long-running operations)
- URL mode elicitation (secure OAuth)
- Sampling with tools (agentic servers)
- 2000+ MCP servers ecosystem
Sources:
- https://github.com/oraios/serena
- https://medium.com/@souradip1000/deconstructing-serenas-mcp-powered-se
mantic-code-understanding-architecture-75802515d116
- https://www.merge.dev/blog/model-context-protocol-alternatives
- https://github.com/zilliztech/claude-context
- https://cyberpress.org/best-mcp-servers/
- https://blog.modelcontextprotocol.io/posts/2025-11-25-first-mcp-annive
rsary/Previousmy 1st response to TLDR - Prompts don't scale. MCPs don't scale. Hooks do.NextWeb vs macOS - Responsive Problem
Last updated
Was this helpful?